Robust Face Recognition by Constrained Part-based Alignment
نویسندگان
چکیده
Developing a reliable and practical face recognition system is a long-standing goal in computer vision research. Existing literature suggests that pixel-wise face alignment is the key to achieve high-accuracy face recognition. By assuming a human face as piece-wise planar surfaces, where each surface corresponds to a facial part, we develop in this paper a Constrained Part-based Alignment (CPA) algorithm for face recognition across pose and/or expression. Our proposed algorithm is based on a trainable CPA model, which learns appearance evidence of individual parts and a tree-structured shape configuration among different parts. Given a probe face, CPA simultaneously aligns all its parts by fitting them to the appearance evidence with consideration of the constraint from the tree-structured shape configuration. This objective is formulated as a norm minimization problem regularized by graph likelihoods. CPA can be easily integrated with many existing classifiers to perform partbased face recognition. Extensive experiments on benchmark face datasets show that CPA outperforms or is on par with existing methods for robust face recognition across pose, expression, and/or illumination changes.
منابع مشابه
Face Alignment Robust to Pose, Expressions and Occlusions
We propose an Ensemble of Robust Constrained Local Models for alignment of faces in the presence of significant occlusions and of any unknown pose and expression. To account for partial occlusions we introduce, Robust Constrained Local Models, that comprises of a deformable shape and local landmark appearance model and reasons over binary occlusion labels. Our occlusion reasoning proceeds by a ...
متن کاملFace Detection with methods based on color by using Artificial Neural Network
The face Detection methodsis used in order to provide security. The mentioned methods problems are that it cannot be categorized because of the great differences and varieties in the face of individuals. In this paper, face Detection methods has been presented for overcoming upon these problems based on skin color datum. The researcher gathered a face database of 30 individuals consisting of ov...
متن کاملIterative Weighted Non-smooth Non-negative Matrix Factorization for Face Recognition
Non-negative Matrix Factorization (NMF) is a part-based image representation method. It comes from the intuitive idea that entire face image can be constructed by combining several parts. In this paper, we propose a framework for face recognition by finding localized, part-based representations, denoted “Iterative weighted non-smooth non-negative matrix factorization” (IWNS-NMF). A new cost fun...
متن کاملEfficient Misalignment-Robust Representation for Real-Time Face Recognition
Sparse representation techniques for robust face recognition have been widely studied in the past several years. Recently face recognition with simultaneous misalignment, occlusion and other variations has achieved interesting results via robust alignment by sparse representation (RASR). In RASR, the best alignment of a testing sample is sought subject by subject in the database. However, such ...
متن کاملWeighted joint sparse representation-based classification method for robust alignment-free face recognition
This work proposes a weighted joint sparse representation (WJSR)-based classification method for robust alignment-free face recognition, in which an image is represented by a set of scale-invariant feature transform descriptors. The proposed method considers the correlation and the reliability of the query descriptors. The reliability is measured by the similarity information between the query ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1501.04717 شماره
صفحات -
تاریخ انتشار 2015